Announcements

1) Last Day to Drop tom orrow $11 / 10$

Laplace Transforms
((hapter 7)
Back to the Brine!

Given a tank containing 1000 L of water in which 30 kg of salt are dissolved.

The tank has two input valves, A and B, which cant both be open at the same time

Valves A and B deliver liquid at $6 \mathrm{~L} / \mathrm{min}$, but the solution from value A contains. 2 kg of salt per liter, and the Solution in value B contains .4 kg of salt perliter.

Liquid exits the tank at $6 \mathrm{~L} / \mathrm{min}$.

Picture

At $t=0$, value A is open. At $t=10$, valve A is closed and Valve B is opened.

Find a formula for $x(t)$, the amount of salt in the tank at time t.

$$
\begin{aligned}
\frac{d x}{d t} & =(\text { rate in })-(\text { rate out }) \\
& =(\text { rate in })-\frac{x(t)}{1000} \cdot 6 \\
& =(\text { rate in })-\frac{3 x(t)}{500} \\
& =6(?)-\frac{3 x(t)}{500}
\end{aligned}
$$

what goes here?

$$
?=h(t)=\left\{\begin{array}{l}
.2 \mathrm{~kg}, 0 \leq t<10 \\
.4 \mathrm{~kg}, t \geq 10
\end{array}\right.
$$

since we switch from valve
A to value B after $t=10$.

$$
\frac{d x}{d t}=6 h(t)-\frac{3 x(t)}{500}
$$

You've seen problems on the homework where you have to break functions up over the time domain we want a better method!

Idea: convert differential equations to polynomial equations, solve the polynomial equation, somehow go back to the differential equations solution.

